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Rotating and stratified fluid flow 
By KATHLEEN TRUSTRUM 

School of Physical Sciences, University of Sussex 

(Received 25 September 1963 and in revised form 12 February 1964) 

For flows in either rotating or stratified fluids, a technique is developed for 
solving initial-value problems using an Oseen approximation to the non-linear 
inertial terms in the equations of motion. The resulting equations for either 
application are similar. The solutions bear a strong qualitative resemblence to 
observed flows of both kinds, being characterized at small Rossby or Froude 
numbers by a blocked flow upstream of an obstacle and waves on the downstream 
side. 

1. Introduction 
The well-known similarity between the experimental observations of the flow 

of a rotating fluid and a stratified fluid past an obstacle, led the author to investi- 
gate whether the theory developed for rotating fluids could be extended to 
stratified fluids. The important features of both types of flow are the blocking of 
the upstream flow and the existence of internal waves on the downstream side of 
the obstacle for low Rossby and Froude numbers (see Long 1953u, b). 

So far the work in rotating fluids has followed one of two approaches. Proud- 
man (1916), Grace (1926), Morgan (1951) and Stewartson (1952) used the linear- 
ized non-steady equations of motion to solve initial-value problems. Proudmari 
and Grace looked for a series solution, whereas Morgan and Stewartson used the 
more successful Laplace-transform technique. Morgan and Stewartson showed 
that the motion in the limit of infinite time is two-dimensional everywhere 
except on a certain singular surface (the circumscribing cylinder) and the axis 
of rotation, where it is non-steady. 

Taylor (1923), Long ( 1 9 5 3 ~ )  and Fraenkel (1956) based their work on the 
steady non-linear equations of motion, which reduce to a linear equation for the 
stream function, if uniform upstream conditions are assumed. Their solutions 
describe a wave-like motion for low Rossby numbers and an irrotational-like 
flow for higher Rossby numbers. The disadvantages of this theory are the need 
to justify the neglect of upstream waves, which are a possible solution, and the 
lack of any terms describing a geostrophic flow. 

The main workin stratifiedfluid flow (Long 19536, 1959; Yih 1958,1959,1960) 
has used the steady non-linear equations of motion, which, again with the 
assumption of suitable uniform upstream conditions, reduce to a linear equation. 
The solutions obtained are similar to those obtained for rotating fluids and suffer 
from the same disadvantages. 

Yih (1959) showed that for steady weak motions the effect of gravity is to 
inhibit vertical motions and horizontal density gradients. He supported his 
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conclusions by a simple experiment in which a paddle was moved slowly through 
a stratified fluid. A little stratification was found sufficient to make the effect of 
the paddle felt far upstream and downstream. 

In the work which follows an attempt is made to combine the two approaches 
by using the non-steady equations of motion with an Oseen-type approximation 
to the non-linear inertia terms. Initial-value problems are solved by the Laplace- 
transform technique and the steady-state solutions are obtained by taking the 
limiting case of infinite time. These solutions contain the type of solution derived 
by Morgan (1951) and Stewartson (1952) as a special case. For given problems 
in both rotating and stratified fluids, parts of the solutions are the same as those 
obtained by Long, Fraenkel and Yih, i.e. irrotational-like terms for high Rossby 
and Froude numbers plus wave-like terms for smaller Rossby and Froude 
numbers. In  addition, the solutions in this paper contain terms which describe 
geostrophic or one-dimensional flow, i.e. blocked flow. One of the results suggests 
that the geostrophic terms depend on the way the steady-state is achieved, 
whereas the irrotational and wave-like terms are only dependent on the Rossby 
or Froude number and the geometry of the problem. In the case of rotating 
fluids the effects of the introduction and neglect of viscosity are also discussed. 
Probably the main value of the work is that it helps to co-ordinate the apparently 
incompatible results of previous workers. 

2. The equations of motion of a viscous rotating fluid 
In this section we consider the problem of an infinite domain of viscous incom- 

pressible fluid which is initially rotating with angular velocity Q about Ox and 
has uniform axial velocity U along Ox. At the time t = 0 a small axisymmetric 
perturbation is introduced and maintained on the plane x: = 0. The problem is to 
find the nature of the flow as t + co. 

The equations of motion of a viscous incompressible fluid referred to axes 
rotating with angular velocity &? are (see Squire 1956, p. 140) 

(1)  
av 
at 
- + (V. v) V + 2fi  A V = - vP+ 1’v2V, 

with P = p - p  - @ - &Q2d2, where p is the pressure, p the density, @ the potential 
of the body force, d is the distance from the axis of rotation and v is the kinematic 
viscosity. The velocity components parallel to the ( r ,  $, x) directions are 
(u ,v ,  w+ U )  respectively, where u,v and w are assumed to be small compared 
with U .  Since the perturbation is axisymmetric, a/a$ = 0. Using this condition 
and neglecting terms of O(u2), the equations of motion (1) reduce to 

(;+u;) (u,v,w)+2Q(-v,u,O) = -- ar 7 0 ,  -”j ax ( a p  

and the equation of continuity becomes 

l a  aw 
r ar 
-- (ru)+z = 0. (3) 



Rotating and strati jed Jluid $ow 417 

From (3) we can define a Stokes stream function $ of the perturbed flow by 

Eliminating P and v from (2) and using (4) ,  the following equation is obtained 

where 

Initial-value problems can usually be solved by the Laplace-transform method 
and we define the Laplace transform by 

f ( p )  = Sm e - p t j ( t )  dt. 
0 

The Laplace transform of (5) is 

provided Dz$ = 0 at t = 0 and D2a$/at = 0 at t = 0. The first condition is 
satisfied provided the viscous stresses remain finite, as the initial perturbation 
flow is irrotational (see Lamb 1933, p. 11); and by eliminating P from (2) we can 
see that the second condition is identically satisfied, as the azimuthal component 
of velocity v is initially zero everywhere. 

Equation (7)  admits solutions of the form 
- 
$ = rJ,(kr) exp ( - akx)  

[p- Uak-VIC2(a2- 1)]"a2-- 1)+4QW = 0, 

( 8 )  

where a is a root of the sextic 

(9) 

and J,(kr) is the Bessel function of order one. Since the perturbation imposed on 
the plane x = 0 can be written in the form 

~ ( r ,  0, t )  = Som ~ ( k ,  t )  r ~ ( k r )  dk,  

it  is sufficient to discuss the behaviour of one Bessel component. 
The boundary conditions at infinity on the perturbation stream function $ are 

$ + O  as x++m for fixedt, 
- 

which imply $ + O  as x+ +a for Re(p) > 0, 

where Re ( p )  denotes the real part of p .  Hence the roots of (9) describing the 
downstream flow (x > 0) must satisfy 

Re(a) > 0 for Re(p) > 0, (10) 

and those describing the upstream flow ( x  < 0) must satisfy 

07 
Re(a) < 0 for R'e(p) > 0. (11)  

Fluid Mech. 19 
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It is convenient to introduce the following non-dimensional variables and 
constants to discuss the roots of (9): 

s = p/2Q2, R, = Uk/2Q,  R = 2 Q / ~ k 2 ,  

where R, is a Rossby number based on the wave-number k of the perturbation 
and R is a Reynolds number estimating the ratio of the Coriolis force to the 
viscous force. Equation (9) now takes the form 

(~-R~a-R- l (a2-1) )2(a~- l )+a '  = 0.  ( 12) 

Case 

Morgan (1951) ,  
Stewartson (1952)  

(ii) R-l small, R, = 0 
Morrison & Morgan 

(i) R-' = 0,  R, = 0. 

(1956) 

(iii) R-l = 0, 
O < R , < 1 .  
Stewartson (1958) 

R-l = 0,  1 < R, 

(iv) R-1 + 0,  
0 < R, < 1, 
RR, $. I 

R-l + 0, 1 < R,, 
RR, $. 1 

Upstream 
(Re(a) < 0 for Re(s) > 0) 
a - -s ,  geostrophic 

a: - -R-l, 
geostrophic-like; 

a - -(+R)B ( l k i ) ,  
Eckman spiral 

a N -s(l-R,)-l, 
geostrophic 

a = - ( l - ~ - z ) B  0 7  

irrotational-like 

a - -{R( 1 - Ro)}-l 
geostrophic-like ; 

a: - -RR, (twice), 
suction boundary layer 

a - - ( ~ - R R , ~ ) * ,  
irrotational-like ; 

a - -RR, (twice), 
suction boundary layer 

Downstream 
(Re(a) > 0 for Re(s) > 0) 
u - s, geostrophic 

R - R-l, 
geostrophic-like ; 

a - ( W ) * ( 1 & 4 ,  
Eckman spiral 

a N s( 1 + R,)-l, 
geostrophic ; 

+s(R,-R;)-l, wave 
a - s(R,+ 1)-l, 

geostrophic ; 

irrotational-like 

geostrophic-like ; 

R N f ~ ( R F ~ -  1)  

a = (~ -R;z )+ ,  

a - {R(l+R,)]-l, 

a - f i(R;Z- 1)B 
+{RE:( 1 - R;)}-', 
wave-like 

irrotational-like ; 
a: - {R(R, f 1 )I-', 

geostrophic-like 

a: - (1 - R o ~ ) ~ ,  

TABLE 1. Asymptotic form of roots a as s -+ 0 or a t  s = 0. 

From (12) i t  is easily seen that the locus of imaginary a lies in the half-plane 
Re (s) 6 0 and only coincides with the imaginary axis for R-l= 0. Hence the 
Re (a) has the same sign for Re (s) > 0, provided the a's are defined as single- 
valued functions of s with the branch cuts extending to Re (s) = - co. 

Now the values of a at s = 0 correspond to the steady-state solution and the 
roots describing the upstream and downstream flows are determined by satisfying 
the boundary conditions a t  upstream and downstream infinity. For R-l =/= 0 the 
Re (a) =/= 0 at s = 0 and the flow is determined, but for R-I = 0 the roots a can 
be imaginary or zero at s = 0. This leads to the type of indeterminacy experi- 
enced in some steady inviscid flow problems, e.g. surface waves, waves in 
rotating fluids and in incompressible stratified fluids (see Long 1953a, b) ,  where 
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waves can theoretically occur upstream as well as downstream of an obstacle but 
are not observed in practice. The indeterminacy can be removed either by 
including viscosity or by solving the initial-value problem. 

The characteristics of the flow for large values of t are discussed in table 1 
above, using the asymptotic form of the roots a for small s. 

In  the work that follows only case (iii) in table 1 will be considered for which 
( 7 )  reduces to 

which has solutions finite a t  r = 0 of the form 
- 
$ = rJ,(kr) exp ( - akx),  

where a is a root of 

(15) (s-Roa)2($-1)+a2 = 0, R - -- U k  s = ~- P 
O -  2Q’ 2Q2‘ 

3. The equations of motion of a stratified fluid 
The study is restricted to two-dimensional flows of a stratified fluid, which is 

assumed to be incompressible, inviscid and non-diffusive. The Euler equations 
for such flows are 

au au au ap 
at ax az 
aw aw aw 
at ax az 

p,+pu-+pw- = 

aP p-+pu-+pw- = -pg-- 
(16) 

ax’ a2 ’ i 
in which u, w are the velocity components parallel to Ox and Oz respectively, 
where z is measured in a direction opposing gravity. Since the fluid is incom- 
pressible and non-diffusive 

and the continuity equation reduces to 

a.u aw -+- = 0. ax az 

We now derive the equations of motion appropriate to the following type of 
initial-value problem. The flow initially consists of a unidirectional flow in the 
x-direction with constant velocity U and density stratification po - Pz  between 
horizontal planes z = 0 and x = d,  where p > 0 is a constant. At the time t = 0 
a perturbation is introduced on the plane x = 0. Let the subsequent velocity 
components parallel to the x and axes be (u + U ,  w), the density po - p z  +p, and 
the pressure p ,  + p ,  where u and w,p ,p  are assumed to be small compared with 
U ,  po - pz,po, respectively and dp,/dz = - (p, - pz) g. Since the initial density 
stratification is small we assume that the only effect of variation in density is the 
generation of buoyancy forces, and that the effects of variation in density on the 

’77-2 
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inertia terms can be neglected. Using this, the Boussinesq approximation, and 
taking terms of O(u,w,p ,p) ,  (16), (17) and (18) reduce to 

From (21) we define a perturbation stream function $ by 

u = a$ia=, = - ,?$lax. ( 2 2 )  

Po(alat + ualax)v2$ = gaplax, v2 = a2/ax2+ a2/a22, (23) 

(apt+ uaiax)2v2$+@a2$/ax2 = 0, 0 = gp/Po. (34) 

011 eliminating p from (19) and using (22) we obtain 

and from (23) and (20) we have 

Since the perturbation is introduced a t  time t = 0, we can define a Laplace 
transform by (6) and derive the following equation for 9 

( p +  uapx)2v~g+ga~ippx2 = 0, (25) 

on using the condition that the initial perturbed motion is irrotational and that 
the initial density perturbation is zero (see (23)), which imply that 

V2$ = 0, Vza$/at = 0 a t  t = 0. 

Equation ( 2 5 )  admits solutions of the form 
- 
$ = ( A  cos kz -t B sin k) exp ( - akx) 

where a is a root of 

or on putting 
( p -  Uak)2(a2- l)+$a2 = 0 

8 == @ 4 p ,  Ri = @-*Uk. 

where Ri is a Froude number which estimates the magnitude of the inertia forces 
to the buoyancy forces, the above equation for a reduces to 

(28) 

On comparing (28) with (15) we see that the equation for 01 is identical except 
that the Froude number Ri replaces the Rossby number R,. The solution (26) is 
similar to (14). Since trigonometric functions are easier to handle than Bessel 
functions, the theory will be developed for a stratified fluid and the solutions 
obtained adjusted for a rotating fluid. 

(s  - Ri O1)Z (a2- 1) + a2 = 0. 

4. Definition of ai(s) as a single-valued function of s 
Before a solution for @ can be obtained it is necessary to examine the nature 

of the singularities of a(s) in the complex s-plane, so that the Laplace inversion 
integral can be evaluated. The branch points of a(s) will occur a t  values of s where 
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two or more of the roots are coincident. The values of a and s at the branch 
points are given by (28) and the derivative of (28) with respect to a, which give 

Provided Ri + 1, the condition Ria = s leads to two coincident roots a = 0 at 
s = 0 and since a N s(Ri k 1)-l near s = 0,  it  follows that the origin is not a 

( ~ - R . j a ) ( s - R i a ~ )  = 0. 

Ri> 1 

R,- 1 

FIGURE 1. Definition of a(s).  

branch point. The other condition Ria3 = s leads to branch points of two of the 
a's at the following values of s 

s = fR,(I-R,3)4, 2Ri(l-wR$p, fR , ( I -w2R;%)d,  

where (1, w ,  w2) are the cube roots of unity. It is worth noting that s = 00 is not 
a branch point. 

If Ri = 1 the first two branch points coincide with the origin and all the roots 
are zero there. Near s = 0 the roots behave like 

N 48, - (%)*, -w(2s)', -w2(%): .  
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We now define the roots a(s) as single-valued functions of s by assigning at  
s = 00, al = 1 to sheet 1, a2 N (s+i)/Ri to sheet 2, a3 - (s-i)/Ri to sheet 3 and 
a:4 = - 1 to sheet 4. By considering the variation of the roots along the real and 
imaginary axes, we can determine where the sheets hang together and hence 
define a(s) in the cases Ri > 1 and R, < 1 as shown in figure 1. 

5. The solution for one Fourier component 

stratified fluid be 
$(O,  z, t )  = (uo/k) sinkzH(t), 

where uo is a constant and H(t )  is the Heaviside function defined by H(t) = 0 for 
t < 0 and H(t )  = 1 for t 0. The boundary conditions on the Laplace transform 
$ are 

(29) 

and%(x,x,p)-+Oasx+ +coforRe(p) > 0. 

Let the perturbation introduced on the plane x = 0 in a uniform flow of 

- II. (0, z,p) = (uo/kp) sin kz,  

From (26) the latter condition implies that 

Re(a) > 0 for Re(p) > 0 for x > 0, 

and Re(a)  < 0 for Re(p) > 0 for x < 0. 

(i) The upstream solution (x < 0)  

The only value of a: satisfying (31) is a4 and hence the solution of (25) satisfying 
(29) is 

+(x,z,p) = (u,/kp)exp( -a,kx)sinka. 

On using the Laplace inversion integral we obtain 

- 

$(x, 2, f )  = Fi 2 sin kx exp ( - a4 kx + pt) dp, S"'"" y--im kP 
where y is chosen to be greater than the real parts of the singularities of a4. Since 
a4 N - 1 asp + 00, we can complete the contour by a large semicircle in Re (p) < 0 
and contours enclosing the branch cuts of a4. The contributions to $ from the 
semicircle in Re (p) < 0 will be zero, as the integrand is O(ePt/p) and the contri- 
butions from the contours enclosing the branch cuts of a4 are 

O(t-8 sin kz exp { - ( 1  - R T % ) ~  Ukt + (1 - R;f)h kx}) for R, > 1,  

and O(t-8 sin kx exp { i(R$ - 1)g Ukt & i(R-Q - 1)f kx)) for R, < 1. (32) 

So in the limit as t + 00 the solution for q% will be determined by the residue 
of $ e p t  at p = 0 and hence in the limit t = CQ, 

(33) I $ = (uo/k) sin kz exp (1 - R ~ 2 ) 6  kx for Ri > 1, 
q% = (uo/k) sin kx for Ri < 1. 

Thus for Ri > 1, the perturbation flow decays exponentially as x+ - m and 
has an irrotational character, reducing to the irrotational solution in the limit 
R, = 00; but for Ri < 1, the solution is independent of x and describes a one- 
dimensional flow extending to upstream infinity. 
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The corresponding upstream solution (x < 0) in the limit t+m, when the 

$(r, 0, t )  = k-1w0rJ,(kr) H(t )  perturbation 

is introduced on the plane x = 0 of a fluid rotating with angular velocity !2 and 
having uniform axial velocity U along Ox, is 

(34) I $ = k-lwOrJ,(kr) exp (1 - Ri2):kx for R, > 1, 
$ = k-lurOrJ,(kr) for R, < 1, 

where R, = UE/2!2. 

(ii) The downstream solution (x > 0) 

The general solution of (25 )  satisfying the downstream boundary condition 
(30) is 
- 
$(x,z,p) = k-lsinIcx[A,exp( -a,Icz)+A,exp( -a,kx)+A,exp(-a,kx)]. 

So to determine the downstream solution uniquely, three boundary conditions 
are required on the plane x = 0, whereas only one condition was necessary for the 
upstream solution. The author has so far been unable to discover whether this is 
a characteristic of all non-steady rotational flows, though the following argument 
may throw some light on the necessity for more boundary conditions to specify 
the downstream flow than the upstream flow. The velocity and position of all 
the fluid particles in the upstream flow are known at the initial instant and the 
problem is to find the effect of the perturbation on x = 0. However, the velocity 
and density of the fluid particles entering the downstream flow on x = 0 are not 
completely specified by one condition on the plane x = 0. 

Let the perturbation introduced on the plane x = 0 a t  the time t = 0 in a 
uniform flow of stratified fluid be given by 

u(O,z,t) = u,coskx = pU(O,z,p), 
w(O,z,t) = wOsinkz = pG(O,z,p), 
p(O,z,t) = a,sin Icz =pp(O,z,p). 

The above boundary conditions lead to the following relations between A,, A,  
and A, 

These give rise to analytic solutions for A,, A ,  and A ,  as functions of p except at  
the branch points of al, a, and a, and at  the origin. The solution for $ is 

From figure 1 we have that 

a, - 1,  a,-p/Uk, a, - p / U k  as p-+c~, 

so that for Ut > x the contour can be completed by a large semicircle in Re (p) < 0 
and contours enclosing the branch cuts of al, a, and a3. The contributions from 
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the branch cuts in Re ( p )  > 0 will be zero as only al, a2 and a3 have branch points 
in Re ( p )  > 0 and from the symmetry of the above relations between the A i ,  it  
follows that across a branch cut of a, and a2 (say), Alexp (-alkx) will go into 
A ,  exp ( - a,kx). The branch points of a,, az and a3 in Re ( p )  < 0, which are also 
branch points of a4 will contribute to y? and their contribution will be of the same 
order as (32). Hence by evaluating the residues of the Ai at the pole p = 0, we 
obtain the following solution for y? in the limit t = 00: 

WO [l-e~p-(l-R;~))Skx] sin kz 
k (1 - Ry2)6 

sin Icz [ 1 + Ri cos ( Rz2 - l)* kx] wo sin (R i2  - I)$ kx 
( R i 2 -  1)6 

-+ for Ri < 1. 

$=-- - ___._~_____ k (Uo __-__ (1 +Ri) 
Uka,  [ 1 - cos (R;2 - 1)* kx] 
+7- (1 +RJ 

Again the solution has an irrotational character for Ri > 1, though it also 
coiitains terms independent of x, provided uo =i= 0. Also it is interesting to note 
that v0 does not appear in the solution for $ for Ri > 1, so that any density 
fluctuation with wave-number k > Q/U does not affect the steady-state flow. 
Similarly, in rotating fluids any perturbation in the azimuthal velocity compo- 
nent v with wave-number k > 2Q/U does not affect the u and w components of 
velocity as t 3 cv. 

For flows in which Ri < 1 and also for Ro < 1 terms giving rise to waves appear 
in the downstream solution as well as terms describing a one-dimensional or 
geostrophic flow. 

6. Applications (i) Strati5edJow into a line sink 
This problem has interesting practical applications to canals closed by gates, 
which do not fit closely at the bottom (see Debler 1961). Yili (1958) gives a 
solution for the steady flow of a stably stratified fluid between two horizontal 
boundaries into a line sink. His axes are chosen so that the boundaries are 
z = 0, z = d and the line sink is at z = 0, x = 0. He assumes that the flow far 
upstream is such that pU2 = A2, where A is a constant and p = po  -Pz ,  in which 
case the steady state is given by the solution of 

subject to the following boundary conditions 

and p(0 ,z )  = A d  for 0 < z G d. 
? y ( x ,  0) = 0, f (x ,  d )  = Ad, 

Yih’s solution is 
2Ad  1 x nrrz 2 - exp (n2+-F-2)% - sin ~, y? ’=  A z + y  

n=l n a d  
where F = A/d(gp)fr is the Froude number of the flow. Yih only claims validity 
for his solution in the range F > r1, as the solution for F < 7r-l can involve 
wave-like terms which do not occur in practice. 
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It is of interest to solve the problem of the flow into a line sink using the 
linearized equation (24). The linearization is obviously invalid in the neighbour- 
hood of the sink, but it is assumed that further upstream the perturbation to the 
uniform flow is small. The relevant boundary conditions on the perturbation 
stream function @ for t > 0 are 

@(x, d,  t )  = @(x, 0, t )  = 0, 

1.0 ~ 

1.1 ~ 

1.15 - 
7 - - 
- 

- 

1.0 . 
0 8  . - 

0.4 \ \  

r 

c -. .'\', 
I I I I 1 I I 

\' 1 
I 

3Ud 1 nrrz @(O,z, t )  = U ( d - z )  = __ x - sin (0 < z < d). 
n n=ln 

2 
0.4 

Using the analysis of $ 5  and the results (33), we obtain the solution for 
Y = $ + Uz,  the total stream function of the flow in the limit t = GO: 

1 nnz 1 nnz x - sin- + Y = uz+- - sin -- exp (n2rr2 - F-2)*z) (36) 
d '  n=l n d n=N+1 n d 

for x < 0,  where N n  < F-1 < (AT+ 1)n and F = U/dG&. 
It is seen that this solution is similar to Yih's solution for F > rr-l, but for 

F < n-l it  contains terms which are independent of x and provides an explana- 
tion of the blocking of the upstream flow found experimentally by Debler (1961) .  
In figure 2 the streamlines for F = gn- are sketched and it bears a qualitative 
resemblance to the flow observed by Debler, though he did not observe the 
alternate jets appearing in the blocked flow. This is possibly because the velocities 
in the blocked flow region are small. However the more probable reason is that 
for some ranges of z in the region, the flow is unstable in the sense that ap/az > 0 
and that this leads to stagnation zones. It is easy to show that the number of 
jets occurring in the blocked flow is N + 1 for Froude numbers satisfying 
N n  < F - l <  ( N + l ) n .  

However the assumption underlying the theory, that the perturbation to the 
upstream flow remains small, must be wrong for F < n-l as the solution gives a 
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finite upstream perturbation. Hence the assumption of a uniform undisturbed 
upstream flow; which has been basic to most theories in both stratified flow and 
rotating fluids is probably not valid. This implies that the steady-state equation, 
which takes a linear form in both theories with the aforementioned assumption, 
becomes more difficult to use as it seems impossible to see what assumptions can 
be made about the upstream flow. 

(ii) Upstream frow due to a porous disk in a rotating fluid 
Unfortunately equation (13) and the results of 0 5 cannot be used to determine 
the steady flow past a disk or solid of revolution, which is moved with uniform 
velocity along the axis of a rotating fluid, as the linearization of the non-linear 
inertia terms is invalid in the neighbourhood of the body. Even if the approxi- 
mation could be justified, it has so far proved impossible to formulate the 
boundary conditions on the plane x = 0 in such a way that the problem can be 
solved. However the nature of the upstream flow due to such a body is probably 
not very different from the solution of the following problem. 

We consider the upstream flow produced by the introduction of the following 
perturbation on x = O for t 2 O 

w = -2uo for r < a,, 

which can be expressed alternatively as 

This perturbation is suggested by the results of Morgan (1951) and Stewartson 
(1952) for a disk and sphere respectively, which are moved slowly along the axis 
of a rotating fluid. 

Using the analysis of fj 5 and the results (34), we obtain the following solution 
for w in the limit as t --f 00 

sin ka 
J,(kr) (acoska-- k 

za/u 

w = 2u’,(so 7r 

where X = U/2Qa is the Rossby number of the flow. 
Since the solutions of Morgan and Stewartson predicted infinite velocities on 

the circumscribing cylinder r = a,  it is of interest to enquire whether the velocities 
predicted by the above solution remain finite in the limit as S-t  0. After some 
algebra the following solution is obtained for w 

w = -wo+O(X*) for r < a,  
uj = &r-+w0S-*+O(1) for r = a, 
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This solution is identical with that of Stewartson and Morgan except on r = a. 
The present result gives velocities O(w, 8-4) on the circumscribing cylinder, 
which suggests that in the problems considered by Morgan and Stewartson the 
velocities on r = a are O( UQa)*. So in the limit as U -+ 0 the velocities on r = a 
would tend to zero, but more slowly than elsewhere in the fluid, where the 
velocities are O( U ) .  It can easily be shown that the width of the shear layer about 
r = a, in which the velocities change rapidly is O(aU/Q)s. Morrison & Morgan 
(1956) (see table 1, case (ii)) found that the velocity in the shear layer is 
O(U(vx/2Qa3)-*) and that the width of the shear layer is O(vx/2!2)*, both 
quantities depending on x. 

It is worth noting that (37) reduces to the irrotational solution for the upstream 
flow past a porous disk in the limit of infinite Rossby number (see Lamb 1932, 
p. 138). 

7. The use of source distributions for generating stratified fluid flow 
over a barrier 

Yih (1960) gives a method of generating solutions for the flow between parallel 
planes z = 0 and z = d over a barrier of unspecified form, using the steady-state 
equation (35). This problem has a bearing on the lee-waves which are observed 
on the lee side of mountain ridges. For a given source of vorticity distribution 
f(z) on x = 0, Yih determines the upstream and downstream solutions by 
assuming the non-existence of upstream waves and matching the solutions 
across x = 0. Yih finds that the amplitudes of the lee-waves are not dependent 
on the exact form of f(z), but only on certain of its integral properties. His 
solution contains no terms independent of x, and so does not account for the 
blocking observed by Long (1955) and Debler (1961). 

We now consider the problem in which an irrotational source distribution is 
switched on in the plane x = 0 at the time t = 0 and maintained there. The flow 
originally consists of a uniform stream of stably stratified fluid flowing with 
uniform velocity U between the planes z = 0 and z = d .  The perturbation is 
assumed to be small so that the linearized equations (19) and (20) can be used. 
For a source distribution on x = 0 of strengthf(z), the continuity equation (21) 

(35) 
becomes 

From (38) a modified perturbation stream function $ can be defined by 

= a$/az, w = - a$/an+ qX)g(z) zqt) ,  g’(z) = $(z). (391 

au/ax + aw/az = qX)f(z)  q t ) .  

On eliminating p and p from (19) and (20) we obtain 

and on taking the Laplace transform as defined by (6), the above equation 
becomes 
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From (19) we have that 

which shows that if the initial density perturbation is zero everywhere, then the 
initial rate of change of vorticity is zero, since the initial perturbation flow is 
irrotational. So the right-hand side of (40) is zero and using (39), (40) reduces to 

We now introduce the generalized Fourier transform as defined in Lighthill (1960) 
(here y replaces the 27ry of Lighthill’s definition): 

- m -  
@(y, 2, p )  = 1 $(x, 2, P) e-ivx dx. 

--m 

On taking the Fourier transform of the above equation we obtain 

The boundary conditions on z = 0 and x = d require that 
- 
gk’(Y,O,P) = ?:‘(y,d,p) = 0. 

Using the method of variation of parameters, we obtain the solution satisfying 
the above boundary conditions, 

where 

The generalized Fourier inversion integral is 

y2 = - y2- QyZ/(p + Uiyj2. 

and for x 5 0 the contour can be completed by a large semicircle in Im (y) 0 
respectively, along which the integrand is exponentially small. The integrand 
has poles at the values of y given by the roots of 

y2+@y2/(p+ = -n27r2/d2 (n = 1 ,2 ,3 ,  ...). (41) 

On writing y = ian7r/d, s = @-if23 and Ri, = d-@Unn, (41) reduces to 

(s-RRina)2(a2- 1)+a2 = 0, 

which is identical with (28) ,  and so the roots of (41) are 

ynj = iajnn-/d (j = 1,2 ,3 ,4) ,  

where a&) is defined as a single-valued function of p as in figure 1.  
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It should be noticed that the integrand is a single-valued function of y although 
sinyd is not. Now 

a 
Re (a,) = - Im (yni)  > 0 for Re ( p )  > 0 

and Re (aq) = Im (yn4) < 0 for Re ( p )  > 0, 

and so as expected only a4 contributes to the flow for x < 0, whereas al, a2 and a3 
describe the flow for x > 0. After some manipulation the following solution is 
obtained for 3: 

( i  = 1,2,3) ,  nrr 
d 

nmr 
d x exp ( - aqy) sin lod sin -- g(T) dT for x < 0, 

Now has a pole a t  p = 0 and branch points a t  the branch points of the ai, 
since p - CJa;nnld vanishes only at the branch points of the ai (see 8 4). The 
contributions to 1c. from the branch cuts are algebraically or exponentially small 
as t -+ 03, the branch cuts in Re ( p )  > 0 having zero contribution as in $ 5 .  After 
further manipulation we obtain the following solution for $ in the limit as 
t + 03, using the values of ai at p = 0 as defined in figure 1. 

nrrr 
d 

1 N 
$ =  c 

n-l (nmF- l ) d  
n2n2F2 

rl=Ar+l  (n2n2F2- 1) 
g(r) sin -- d r  for x < 0,  - _ _ _ _ _  

and 

where RilL = nmF and Nn < F-l < ( N  + 1) 7 ~ .  

The solution (42) is different from that obtained by Yih who uses a different 
type of source distribution, though the property that the amplitude of the lee- 
waves is not dependent on the exact form offfz) is retained. The main difference 
in the solutions is the presence of terms independent of x in (43). These are the 
terms which give rise to the jets upstream of the obstacle, observed by Long (1  955) 
for low Proude numbers. Yih eliminates the possibility of obtaining such terms 
by his assumption of uniform upstream conditions. 
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For values of F-I = mir, where m is an integer, the solution for $- is singular 
and resonance occurs. The solution for a source and a dipole with its axis along 
Oz at x = 0, z = xo, can be obtained by putting f(z) = 6(z-zo)  and 6'(z-zo)  
respectively. It is interesting to note that the solution for a dipole with its axis 
along the direction of the uniform stream, obtained by differentiating the solu- 
tion for a source with respect to x, has no terms independent of x and so its 
influence does not extend to upstream infinity. However the solution for a 
dipole with its axis perpendicular to the uniform stream does contain terms 
independent of x. This is to be expected when one considers that the effects of 
stratification are to inhibit motions in the Ox direction. 

8. The ring source in a rotating fluid 
The general results for sources in a stratified fluid can easily be extended to 

rotating fluids by replacing the trigonometric functions with Bessel functions. 
However it is of more interest to solve one of the problems considered by Fraenkel 
(1956) and to compare the results. 

Fraenkel solves the problem for the steady flow of a rotating fluid through 
a pipe and past a ring source on the wall of the pipe. The axis Ox is chosen so as 
to coincide with the axis of the pipe, which is of unit radius, and the ring source 
is situated on the pipe wall at  x = 0. The boundary conditions on the perturbation 
stream function $ are 

$(l ,x) = 0, x < 0; $(l,x) = nz, x > 0; $(O,x) = 0. 

Fraenkel assumes that the flow far upstream consists of a solid body rotation 
with angular ve1ocity.Q about Ox and a uniform axial velocity U .  The equation 
satisfied by $ reduces to 

a 1 a$ P$- 4 ~ 2  

ar r ar ax2 U2 
r ~- - - +-- +--- $- = 0 

(see Squire 1956, p. 156). Fraenkel obtains the following solution: 

(43) 

and 

where j, is the nth non-zero root of J,(x) = 0, S = U / 2 Q  is the Rossby number 
of the flow and j, < S-l < j,,,,,. 

We now consider the problem in which the ring source is switched on at  t = 0. 
This problem is ideal for solution by the linearized equation as the strength of the 
source can be made arbitrarily small. Using the same method as in $ 7 ,  we 
obtain the following solution for $- in the limit t+m. 
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and 

for x > 0 and 0 Q r < 1, (45) 

with the same meaning as above for S ,  j ,  and N .  
On comparing the solutions (44) and (45)  we see that the exponential and 

wave terms are identical, but that (45)  contains additional geostrophic terms. 
If we put U = 0 in (45) we obtain the solution appropriate to the neglect of the 
non-linear inertia terms, namely 

m 

$=-  C Jl( jnr) /k jnJo(jJ}  for x < 0, 
n = l  

m 
$ = -mr Jl(jmr)/{jnJo(j ,)} = gmrz for x > 0 and 0 < r < 1.  

n=l 

Thus the following conclusions are suggested by (45). First, Taylor (1922), 
Long ( 1 9 5 3 ~ )  and Fraenkel (1956) found no geostrophic terms in their solutions 
because of their assumption of zero perturbation to the upstream flow at infinity, 
which led to equation (43) for the perturbation stream function. Secondly, 
Morgan (1951) and Stewartson (1952) found no waves or irrotational-like terms 
in their solutions, as these terms arise from the non-linear inertia terms, which 
are neglected in their equations of motion. 

The steady-state problem of the ring source considered by Fraenkel could also 
be set up in the following way. Consider the problem in which a ring source and 
a ring sink are switched on at t = 0, on the pipe wall at  x = 0. During the 
subsequent Aow the ring sink is moved downstream with constant velocity V so 
that in the limit as t -+ 00, we are left with only a ring source at  12: = 0. The solution 
for $ for this problem in the limit t = 00 is 

and 

On comparing (45) and (46 )  it is seen that only the geostrophic terms are 
different. This result suggests the following important hypothesis, namely, that 
the wave-like and irrotational-like terms are determined by the geometry of the 
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problem and are independent of the way the steady state is achieved, whereas the 
geostrophic terms depend on the means of setting up the steady motion as well as 
on the geometry of the problem. 

The author gratefully acknowledges the help she has received from Dr Ian 
Yroudman and Dr Ruth Rogers in the preparation of this paper. The work 
described in the paper was carried out at  the University of Cambridge during the 
tenure of a Department of Scientific and Industrial Research Studentship. 
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